上极限和下极限
集合X的幂集P(X)是完备格。对于P(X)中的序列,也就是X的子集的序列,其上下极限也有用处。
若
X
n
{\displaystyle X_{n}}
是这样的序列,那么X的元素a属于
lim inf
X
n
{\displaystyle \liminf X_{n}}
,当且仅当存在自然数
n
0
{\displaystyle n_{0}}
使得对于所有
n
>
n
0
{\displaystyle n>n_{0}}
,a在
X
n
{\displaystyle X_{n}}
里。元素a属于
lim sup
X
n
{\displaystyle \limsup X_{n}}
,当且仅当对所有自然数
n
0
{\displaystyle n_{0}}
,都存在一个指数
n
>
n
0
{\displaystyle n>n_{0}}
使得a在
X
n
{\displaystyle X_{n}}
里。换句话说,
lim sup
X
n
{\displaystyle \limsup X_{n}}
包含了所有这样的元素,其中的每一个,都有无限多个n,使得它在集合
X
n
{\displaystyle X_{n}}
里;而
lim inf
X
n
{\displaystyle \liminf X_{n}}
包含了所有这样的元素,其中的每一个,都有除了有限多个外的所有n,使得它在
X
n
{\displaystyle X_{n}}
里。
以集合论的标准语言来说,一个集合序列的下确界是这些集合的可数交,也就是包含在所有集合里的最大集合:
inf
{
X
m
:
m
=
1
,
2
,
3
,
…
}
=
⋂
m
=
1
∞
X
m
{\displaystyle \inf \left\{\,X_{m}:m=1,2,3,\dots \,\right\}={\bigcap _{m=1}^{\infty }}X_{m}}
。
令
I
n
{\displaystyle I_{n}}
为自
X
n
{\displaystyle X_{n}}
起的集合的下确界。那么序列
I
n
{\displaystyle I_{n}}
非递减,因为
I
n
⊂
I
n
+
1
{\displaystyle I_{n}\subset I_{n+1}}
。所以,第1至n个下确界的并集就是第n个下确界。下极限就是这序列的极限:
lim inf
n
→
∞
X
n
=
⋃
n
=
1
∞
(
⋂
m
=
n
∞
X
m
)
{\displaystyle \liminf _{n\rightarrow \infty }X_{n}={\bigcup _{n=1}^{\infty }}\left({\bigcap _{m=n}^{\infty }}X_{m}\right)}
。
上极限可以相反方式定义。一个集合序列的上确界是包含这些集合的最小集合,也就是它们的可数并:
sup
{
X
m
:
m
=
1
,
2
,
3
,
…
}
=
⋃
m
=
1
∞
X
m
{\displaystyle \sup \left\{\,X_{m}:m=1,2,3,\dots \,\right\}={\bigcup _{m=1}^{\infty }}X_{m}}
。
上极限是这个非递增的上确界序列的可数交(其中每个上确界都包含在前一个里面)。
lim sup
n
→
∞
X
n
=
⋂
n
=
1
∞
(
⋃
m
=
n
∞
X
m
)
{\displaystyle \limsup _{n\rightarrow \infty }X_{n}={\bigcap _{n=1}^{\infty }}\left({\bigcup _{m=n}^{\infty }}X_{m}\right)}
。
例子或应用可见波莱尔-坎泰利引理,柯西-阿达马公式(Cauchy-Hadamard Formula)。